

Simulation: LCA for supply chain

How to become SAF ready? How to make SAF happen? SAF Training for ACI Africa & AFRAA 23-25.04.2025, Arusha, Tanzania

Your safety is our mission.

An Agency of the European Union

Your group work: Decision making from default LCA values for CORSIA eligible fuels

Conduct a simplified LCA to calculate GHG emissions at different stages of SAF supply chain and propose practical strategies to reduce them.

Group work:

- You will be divided into **eight groups**.
- Discuss and evaluate the LCA case in your group.
- **Propose solutions** to minimize the environmental impacts by **collaborating with other stakeholders**.
- You will have **20 minutes** to dive into your group discussion and to **fill out the worksheet**.
- Summarize the key findings and highlight the stages with improvement potential in 2 minutes.
- Later, each case group representatives have **5** minutes to present their collective solutions to the audience.

Task

Your group work: Analyze the lifecycle data to identify the most impactful emission values

Scenario: An airport-airline partnership is analyzing two SAF options using an LCA framework to identify environmental trade-offs and areas for improvement.

Tasks

Analyse the lifecycle data to identify the most impactful improvements.

- Which stage contributes the most emissions?
- How can stakeholders collaborate to reduce lifecycle emissions?
- What policy or financial incentives could improve outcomes?

Pro	Provisional Data				
	Case A HEFA (UCO)		Case B FT (Corn Stover)		
Data provider	JRC	MIT	JRC	JRC	МІТ
Model	E3	GREET	E3	GREET	GREET
Feedstock Cultivation and Collection*	0	3.6	1.5	2.1	3.3
Feedstock Transportation*	1.7	0.3	4.7	2.3	2.3
Feedstock-to-Fuel Conversion*	11	10.5	3.3	0	0
Fuel Transportation*	0.3	0.5	0.3	0.9	0.9
*(g CO₂e/MJ)	I	I	I	I	'

Excel calculation

Source: ICAO; HEFA - Hydoresterrification of fatty acids; UCO – Used cooking oil; FT – Fischer Tropsch; JRC - Joint Research Centre; MIT - Massachusetts Institute of Technology; GREET - Greenhouse gases, Regulated Emissions, and Energy use in Technologies,; E3 - Economy–Energy–Environment

Stakeholder Considerations for LCA-based Decision Making

Sustainability Officer

Focus: Reducing overall lifecycle emissions, aligning with decarbonization goals.Main Concern: Which SAF pathway offers the lowest total CO₂ emissions reduction potential?

Key Table Data: Feedstock-to-fuel conversion efficiency, total emissions values.

- Which SAF pathway has the lowest overall emissions reduction potential?
- How should emissions reduction potential from different lifecycle stages (e.g., feedstock cultivation, transportation, conversion) be weighted in decision-making?
- How do renewable energy sources (e.g., wind, solar) impact the overall carbon footprint of SAF? Should procurement policies incentivize their adoption?

Airline Executive

Focus: Ensuring SAF adoption is cost-effective, operationally feasible, and reliable.
Main Concern: Are there trade-offs between low emissions and fuel availability/cost?
Key Table Data: Pathway feasibility, feedstock transportation emissions, fuel transportation costs.

- How do feedstock availability and transportation emissions impact operational feasibility?
- Are there SAF options that are more logistically viable for airlines to integrate?
- Would you prioritize a slightly higher-emission pathway if it meant more reliable supply and lower cost?
- If a SAF producer shifts to low-carbon hydrogen sources or regenerative farming, how will this affect the carbon intensity, fuel availability and cost?
- Should airlines prioritize SAF suppliers that implement integrated waste management and increase co-products, even if the price is higher? Why?

Policy Advisor

Focus: Ensuring SAF complies with CORSIA regulations and national policies. **Main Concern:** Which pathway best aligns with existing sustainability regulations? **Key Table Data:** Total emissions, co-product benefits, regulatory fit.

- What kind of policy incentives can encourage SAF producers to transition to renewable electricity and sustainable farming what is the role of LCA on this?
- How can regulatory frameworks ensure that co-product benefits are accurately accounted for in LCA calculations?
- What role do carbon intensity targets play in shaping SAF procurement choices?

Fuel Supplier

Focus: Ensuring SAF production and logistics are scalable in the long term.Main Concern: How do infrastructure, supply chain logistics, and feedstock availability impact each pathway?

Key Table Data: Feedstock cultivation and transportation emissions, total emissions.

- Which feedstocks are the most logistically challenging to source and transport?
- What are the biggest challenges in switching to renewable hydrogen sources for SAF production and how these changes would?
- What role do infrastructure investments play in making certain pathways more viable?
- Do co-product benefits make some pathways more attractive despite higher initial emissions?

Fill out the worksheet for option A or option B

Task

	Emissions (gCO ₂ /MJ)	Possible improvements	Stakeholders involved
Feedstock cultivation & collection			
Feedstock Transportation			
Feedstock to fuel conversion			
Fuel Transportation			
Total Emission			

Discussion: Potential actions to minimize GHG emissions

Questions	Case A: HEFA	Case B: FT
Which stage contributes the most emissions?		
How can stakeholders collaborate to reduce lifecycle emissions?		
What policy or financial incentives could improve outcomes?		

Thank you for your attention!

easa.europa.eu/connect

An Agency of the European Union